Publications by authors named "A Sarmiento-Reyes"

Achieving the smart motion of any autonomous or semi-autonomous robot requires an efficient algorithm to determine a feasible collision-free path. In this paper, a novel collision-free path homotopy-based path-planning algorithm applied to planar robotic arms is presented. The algorithm utilizes homotopy continuation methods (HCMs) to solve the non-linear algebraic equations system (NAES) that models the robot's workspace.

View Article and Find Full Text PDF

This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.

View Article and Find Full Text PDF

In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods.

View Article and Find Full Text PDF

Unlabelled: This work presents a direct procedure to apply Padé method to find approximate solutions for nonlinear differential equations. Moreover, we present some cases study showing the strength of the method to generate highly accurate rational approximate solutions compared to other semi-analytical methods. The type of tested nonlinear equations are: a highly nonlinear boundary value problem, a differential-algebraic oscillator problem, and an asymptotic problem.

View Article and Find Full Text PDF

We present a homotopy continuation method (HCM) for finding multiple operating points of nonlinear circuits composed of devices modelled by using piecewise linear (PWL) representations. We propose an adaptation of the modified spheres path tracking algorithm to trace the homotopy trajectories of PWL circuits. In order to assess the benefits of this proposal, four nonlinear circuits composed of piecewise linear modelled devices are analysed to determine their multiple operating points.

View Article and Find Full Text PDF