Publications by authors named "A Saric"

Multivesicular endosomes (MVEs) sequester membrane proteins destined for degradation within intralumenal vesicles (ILVs), a process mediated by the membrane-remodeling action of Endosomal Sorting Complex Required for Transport (ESCRT) proteins. In , endosomal membrane constriction and scission are uncoupled, resulting in the formation of extensive concatenated ILV networks and enhancing cargo sequestration efficiency. Here, we used a combination of electron tomography, computer simulations, and mathematical modeling to address the questions of when concatenated ILV networks evolved in plants and what drives their formation.

View Article and Find Full Text PDF

Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization.

View Article and Find Full Text PDF
Article Synopsis
  • Dynein cytoplasmic 1 light intermediate chain 1 (LIC1) is an important part of a motor complex in cells that helps move things around.
  • Scientists found a special zebrafish with a mutation in LIC1, which caused it to have more blood vessel growth (angiogenesis) than normal.
  • The research shows that LIC1 and certain helper proteins (RILPL1 and 2) are important because they help break down parts of the cell that can cause too much new blood vessel growth when damaged.
View Article and Find Full Text PDF

Despite the existence of various therapeutic approaches, diabetes mellitus and its complications have been an increasing burden of mortality and disability globally. Hence, it is necessary to evaluate the efficacy and safety of medicinal plants to support existing drugs in treating diabetes. Xanthones, the main secondary metabolites found in and , display various biological activities.

View Article and Find Full Text PDF

The individualization of chromosomes during early mitosis and their clustering upon exit from cell division are two key transitions that ensure efficient segregation of eukaryotic chromosomes. Both processes are regulated by the surfactant-like protein Ki-67, but how Ki-67 achieves these diametric functions has remained unknown. Here, we report that Ki-67 radically switches from a chromosome repellent to a chromosome attractant during anaphase in human cells.

View Article and Find Full Text PDF