Publications by authors named "A Saraswati"

Background: The WHO classification of central nervous system neoplasms (2016) recognized 4 histologic variants and genetically defined molecular subgroups within medulloblastoma (MB). Further, in the 2021 classification, new subtypes have been provisionally added within the existing subgroups reflecting the biological diversity. YAP1, GAB1, and β-catenin were conventionally accepted as surrogate markers to identify these genetic subgroups.

View Article and Find Full Text PDF

In contrast to A plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (), sulfonylurea (), and sulfonamide () series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays.

View Article and Find Full Text PDF

In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap.

View Article and Find Full Text PDF

The search of new therapeutic tools for the treatment of cancer is being a challenge for medicinal chemists. Due to their role in different pathological conditions, histone deacetylase (HDAC) enzymes are considered valuable therapeutic targets. HDAC6 is a well-investigated HDAC-class IIb enzyme mainly characterized by a cytoplasmic localization; HDAC8 is an epigenetic eraser, unique HDAC-class I member that displays some aminoacidic similarity to HDAC6.

View Article and Find Full Text PDF

The 2021 WHO classification stratifies ependymoma (EPN) into nine molecular subgroups according to the anatomic locations which outperforms histological grading. We aimed at molecularly reclassifying 200 EPN using immunohistochemistry (IHC) and sequencing for ZFTA fusions in supratentorial (ST) EPN. Further, we assessed the utility of L1CAM, cyclinD1, and p65 markers in identifying ZFTA fusion.

View Article and Find Full Text PDF