Cockayne syndrome (CS) and UV-sensitive syndrome (UVSS) are rare genetic disorders caused by mutation of the DNA repair and multifunctional CSA or CSB protein, but only CS patients display a progeroid and neurodegenerative phenotype, providing a unique conceptual and experimental paradigm. As DNA methylation (DNAm) remodelling is a major ageing marker, we performed genome-wide analysis of DNAm of fibroblasts from healthy, UVSS and CS individuals. Differential analysis highlighted a CS-specific epigenomic signature (progeroid-related; not present in UVSS) enriched in three categories: developmental transcription factors, ion/neurotransmitter membrane transporters and synaptic neuro-developmental genes.
View Article and Find Full Text PDFBackground: Xeroderma pigmentosum (XP) is a group of rare hereditary disorders with highly increased risk of skin tumors due to defective DNA repair. Recently we reported 34-fold increased risk of internal tumors in XP patients in comparison with general population. The molecular data and clinical practice on the internal tumors treatment in XP patients is limited and scarcely represented in the medical literature.
View Article and Find Full Text PDFBackground: Xeroderma pigmentosum (XP) is a rare genetic disorder characterized by a high incidence of skin cancers. These patients are deficient in nucleotide excision repair caused by mutations in one of the 7 XP genes.
Methods: We diagnosed 181 XP patients using UV-induced DNA repair measurements and/or DNA sequencing from 1982 to 2022 in France.
Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified.
View Article and Find Full Text PDF