Publications by authors named "A Sanson"

This case report describes a patient with a medical history of schizophrenia, found in a coma with hyperthermia, likely due to classic heatstroke. The white blood cells observed on the blood smear showed cytological abnormalities characterized by multilobed nuclei, which could be early signs of cell death. The evolution into multiorgan failure led rapidly to death.

View Article and Find Full Text PDF

During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats.

View Article and Find Full Text PDF

Proton-conducting ceramic materials have emerged as effective candidates for improving the performance of solid oxide cells (SOCs) and electrolyzers (SOEs) at intermediate temperatures. BaCeO and BaZrO perovskites doped with rare-earth elements such as YO (BCZY) are well known for their high proton conductivity, low operating temperature, and chemical stability, which lead to SOCs' improved performance. However, the high sintering temperature and extended processing time needed to obtain dense BCZY-type electrolytes (typically > 1350 °C) to be used as SOC electrolytes can cause severe barium evaporation, altering the stoichiometry of the system and consequently reducing the performance of the final device.

View Article and Find Full Text PDF
Article Synopsis
  • The high-entropy strategy enhances the energy-storage performance of dielectric capacitors, benefiting various electronic systems but poses challenges in designing effective ferroelectrics due to unclear correlations between core effects and local polarization.
  • By engineering local lattice distortion, researchers achieved a remarkable energy density of 18.7 J/cm³ and efficiency of 85% in specific high-entropy bulk ceramics.
  • Improvements in configurational entropy led to smoother polarization fields, reduced hysteresis, and enhanced breakdown strength, resulting in over sixfold increases in energy density and threefold in efficiency.
View Article and Find Full Text PDF

Exploring the relationship between thermal expansion and structural complexity is a challenging topic in the study of modern materials where volume stability is required. This work reports a new family of negative thermal expansion (NTE) materials, AM(CN) with A = Li and Na and M = B, Al, Ga, and In. Here, the compounds of LiB(CN) and NaB(CN) were only synthesized; others were purely computationally studied.

View Article and Find Full Text PDF