Unlabelled: Oxalate (Ox) is a very common component of the human diet, capable to collect in the renal tissue and bind calcium to form calcium oxalate (CaOx) crystals. A supersaturation of CaOx crystal may cause nephrocalcinosis and nephrolithiasis. The inflammation derived from the CaOx crystal accumulation, together with innate or secondary renal alterations, could strongly affect the renal function.
View Article and Find Full Text PDFJ Med Chem
July 2012
New indolylarylsulfone (IAS) derivatives bearing nitrogen containing substituents at the indole-2-carboxamide inhibited the HIV-1 WT in MT-4 cells at low nanomolar concentrations. In particular, compound 9 was uniformly effective against the mutant Y181C, Y188L, and K103N HIV-1 strains; it was highly active against the multidrug resistant mutant IRLL98 HIV-1 strain bearing the K101Q, Y181C, and G190A mutations conferring resistance to NVP, DLV, and EFV and several HIV-1 clades A in PBMC.
View Article and Find Full Text PDFDrug development is a long and expensive process. It starts from the identification of a small molecule (hit compound) endowed with the ability to suppress a cellular or viral enzyme essential for the development of a given disease and proceeds through subsequent rounds of structural changes and optimization until the desired pharmacological properties are reached (lead compound). At any point of the hit-to-lead optimization process, it is of essence to monitor the behavior of the intermediate molecules with respect to their molecular targets.
View Article and Find Full Text PDFThe single enantiomers of two pyrimidine-based HIV-1 non-nucleoside reverse transcriptase inhibitors, 1 (MC1501) and 2 (MC2082), were tested in both cellular and enzyme assays. In general, the R forms were more potent than their S counterparts and racemates and (R)-2 was more efficient than (R)-1 and the reference compounds, with some exceptions. Interestingly, (R)-2 displayed a faster binding to K103N RT with respect to WT RT, while (R)-1 showed the opposite behavior.
View Article and Find Full Text PDFPrevious studies aimed at exploring the SAR of C2-functionalized S-DABOs demonstrated that the substituent at this position plays a key role in the inhibition of both wild-type RT and drug-resistant enzymes, particularly the K103N mutant form. The introduction of a cyclopropyl group led us to the discovery of a potent inhibitor with picomolar activity against wild-type RT and nanomolar activity against many key mutant forms such as K103N. Despite its excellent antiviral profile, this compound suffers from a suboptimal ADME profile typical of many S-DABO analogues, but it could, however, represent a promising candidate as an anti-HIV microbicide.
View Article and Find Full Text PDF