A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.
View Article and Find Full Text PDFHere we present a computational and experimental fluid dynamics study for the characterization of the flow field within the gas chamber of a Quartz-Enhanced Photoacoustic Spectroscopy (QEPAS) sensor, at different flow rates at the inlet of the chamber. The transition from laminar to turbulent regime is ruled both by the inlet flow conditions and dimension of the gas chamber. The study shows how the distribution of the flow field in the chamber can influence the QEPAS sensor sensitivity, at different operating pressures.
View Article and Find Full Text PDFPhotoacoustic spectroscopy (PAS) as a highly sensitive and selective trace gas detection technique has extremely broad application in many fields. However, the laser sources currently used in PAS limit the sensing performance. Compared to diode laser and quantum cascade laser, the solid-state laser has the merits of high optical power, excellent beam quality, and wide tuning range.
View Article and Find Full Text PDFThe extension of dual-comb spectroscopy (DCS) to all wavelengths of light along with its ability to provide ultra-large dynamic range and ultra-high spectral resolution, renders it extremely useful for a diverse array of applications in physics, chemistry, atmospheric science, space science, as well as medical applications. In this work, we report on an innovative technique of quartz-enhanced multiheterodyne resonant photoacoustic spectroscopy (QEMR-PAS), in which the beat frequency response from a dual comb is frequency down-converted into the audio frequency domain. In this way, gas molecules act as an optical-acoustic converter through the photoacoustic effect, generating heterodyne sound waves.
View Article and Find Full Text PDFIn this paper, an end-to-end methane gas detection algorithm based on transformer and multi-layer perceptron (MLP) for tunable diode laser absorption spectroscopy (TDLAS) is presented. It consists of a Transformer-based U-shaped Neural Network (TUNN) filtering algorithm and a concentration prediction network (CPN) based on MLP. This algorithm employs an end-to-end architectural design to extract information from noisy transmission spectra of methane and derive the CH concentrations from denoised spectra, without intermediate steps.
View Article and Find Full Text PDF