Publications by authors named "A Sallmyr"

While DNA ligase I (LigI) joins most Okazaki fragments, a backup pathway involving poly(ADP-ribose) synthesis, XRCC1 and DNA ligase IIIα (LigIIIα) functions along with the LigI-dependent pathway and is also capable of supporting DNA replication in the absence of LigI. Here we have addressed for the first time the roles of PARP1 and PARP2 in this pathway using isogenic null derivatives of mouse CH12F3 cells. While single and double null mutants of the parental cell line and single mutants of LIG1 null cells were viable, loss of both PARP1 and PARP2 was synthetically lethal with LigI deficiency.

View Article and Find Full Text PDF

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair.

View Article and Find Full Text PDF

DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway.

View Article and Find Full Text PDF

To ensure genome integrity, the joining of breaks in the phosphodiester backbone of duplex DNA is required during DNA replication and to complete the repair of almost all types of DNA damage. In human cells, this task is accomplished by DNA ligases encoded by three genes, LIG1, LIG3 and LIG4. Mutations in LIG1 and LIG4 have been identified as the causative factor in two inherited immunodeficiency syndromes.

View Article and Find Full Text PDF

Alternative end-joining (a-EJ) pathways, which repair DNA double-strand breaks (DSBs), are initiated by end resection that generates 3' single strands. This reaction is shared, at least in part, with homologous recombination but distinguishes a-EJ from the major nonhomologous end-joining pathway. Although the a-EJ pathways make only a minor and poorly understood contribution to DSB repair in nonmalignant cells, there is growing interest in these pathways, as they generate genomic rearrangements that are hallmarks of cancer cells.

View Article and Find Full Text PDF