Purpose Of Review: This review aims to explore the emerging potential of artificial intelligence (AI) in refining risk prediction, clinical diagnosis, and treatment stratification for cardiomyopathies, with a specific emphasis on arrhythmogenic cardiomyopathy (ACM).
Recent Findings: Recent developments highlight the capacity of AI to construct sophisticated models that accurately distinguish affected from non-affected cardiomyopathy patients. These AI-driven approaches not only offer precision in risk prediction and diagnostics but also enable early identification of individuals at high risk of developing cardiomyopathy, even before symptoms occur.
Fibroblast activation protein inhibitor positron emission tomography (PET) has gained interest for its ability to demonstrate uptake in a diverse range of tumors. Its molecular target, fibroblast activation protein, is expressed in cancer-associated fibroblasts, a major cell type in tumor microenvironment that surrounds various types of cancers. Although existing literature on FAPI PET is largely from single-center studies and case reports, initial findings show promise for some cancer types demonstrating improved imaging when compared with the widely used 18F-fludeoxyglucose PET for oncologic imaging.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
September 2024
Purpose: Fibroblast activation protein (FAP)-inhibitor (FAPI)-PET tracers allow imaging of the FAP-expressing cancer associated fibroblasts (CAF) and also the normal activated fibroblasts (NAF) involved in inflammation/fibrosis that may be present after invasive medical interventions. We evaluated [68Ga]Ga-FAPI-46 uptake patterns post-medical/invasive non-systemic interventions.
Methods: This single-center retrospective analysis was conducted in 79 consecutive patients who underwent [Ga]Ga-FAPI-46 PET/CT.
Bacteriophage (BP) cocktail was partially resistant to different temperatures and pH values.The BP cocktail showed lytic effects on different isolates.The BP cocktail reduced colonization in the internal organs of broilers.
View Article and Find Full Text PDFBackground: Prostate-specific membrane antigen (PSMA) is highly and specifically upregulated in active-inflamed mucosa of patients with inflammatory bowel disease (IBD). We hypothesized that this upregulation would be detectable using a PSMA-targeted positron emission tomography/computed tomography (PET/CT) imaging agent, [F]DCFPyL, enabling non-invasive visualization of inflammation. A noninvasive means of detecting active inflammation would have high clinical value in localization and management of IBD.
View Article and Find Full Text PDF