Living systems rely on molecular building blocks with low structural symmetry. Therefore, constituent amino acids and nucleotides yield short-lived nuclear magnetic responses to electromagnetic radiation. Magnetic signals are at the basis of molecular imaging, structure determination and interaction studies.
View Article and Find Full Text PDFImaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
February 2021
We introduce a new symmetry-based method for structural investigations of areas surrounding water-exchanging hydrogens in biomolecules by liquid-state nuclear magnetic resonance spectroscopy. Native structures of peptides and proteins can be solved by NMR with fair resolution, with the notable exception of labile hydrogen sites. The reason why biomolecular structures often remain elusive around exchangeable protons is that the dynamics of their exchange with the solvent hampers the observation of their signals.
View Article and Find Full Text PDF