A new member of the zeolite-templated carbon (ZTC) family with unprecedented properties has been developed using extralarge-pore zeolite ZEO-1 (JZO) as a template. The resulting ZTC-JZO exhibits strong X-ray diffraction long-range order, replicating three distinct zeolite planes with different lattice spacings. By harnessing the enhanced micropore void volume in the ZEO-1 template, we achieved the first ZTC with a bimodal micropore size distribution, resulting in superior skeleton density and thickness.
View Article and Find Full Text PDFBackground: Hip dysplasia is one of the most common malformations in childhood and has a significant impact on the further life of those affected. A distinction must be made between congenital and the much rarer acquired dysplasia. Early diagnosis and therapy are pivotal for further development of patients.
View Article and Find Full Text PDFMethanobactin OB3b (Mbn-OB3b) is a unique natural product with stunning affinity for copper ions (K ≈Cu(I) 10 ). Here, we report the first total synthesis of Cu(I)-bound methanobactin OB3b featuring as key transformations a cyclodehydration-thioacylation sequence, to generate the conjugated heterocyclic systems, and a copper-templated cyclization, to complete the caged structure of the very sensitive target compound.
View Article and Find Full Text PDFBilateral defects (diameter 8 mm) in the medial tibial head of senile, osteopenic female sheep (n = 48; 9.63 ± 0.10 years; mean ± SEM) were treated with hydroxyapatite (HA)/beta-tricalcium phosphate (β-TCP)/dicalcium phosphate dihydrate (DCPD; brushite) cylinders coated with BMP-2 (25 or 250 micrograms) or growth differentiation factor (GDF)-5 (125 or 1250 micrograms; left side); cylinders without BMP served as controls (right side).
View Article and Find Full Text PDFThis work reveals the crucial role of zeolite acidity in the synthesis of zeolite-templated carbons (ZTCs). While textural and chemical properties appear to be independent from acidity at a given synthesis temperature, the spin concentration in hybrid materials appears to be strongly impacted by the zeolite acid site concentration. The electrical conductivity of the hybrids and resulting ZTCs are closely related to the spin concentration in the hybrid materials.
View Article and Find Full Text PDF