In Europe, swine represent economically important farm animals and furthermore have become a preferred preclinical large animal model for biomedical studies, transplantation and regenerative medicine research. The need for typing of the swine leukocyte antigen (SLA) is increasing with the expanded use of pigs as models for human diseases and organ-transplantation experiments and their use in infection studies and for design of veterinary vaccines. In this study, we characterised the SLA class I (SLA-1, SLA-2, SLA-3) and class II (DRB1, DQB1, DQA) genes of 549 farmed pigs representing nine commercial pig lines by low-resolution (Lr) SLA haplotyping.
View Article and Find Full Text PDFThe porcine major histocompatibility complex (MHC) harbors the highly polymorphic swine leukocyte antigen (SLA) class I and II gene clusters encoding glycoproteins that present antigenic peptides to T cells in the adaptive immune response. In Austria, the majority of commercial pigs are F 2 descendants of F 1 Large White/Landrace hybrids paired with Pietrain boars. Therefore, the repertoire of SLA alleles and haplotypes present in Pietrain pigs has an important influence on that of their descendants.
View Article and Find Full Text PDFThe immune system works through leukocytes interacting with each other, with other cells, with tissue matrices, with infectious agents, and with other antigens. These interactions are mediated by cell-surface glycoproteins and glycolipids. Antibodies against these leukocyte molecules have provided powerful tools for analysis of their structure, function, and distribution.
View Article and Find Full Text PDFThe conversion into abnormally folded prion protein (PrP) plays a key role in prion diseases. PrP(C) carries two N-linked glycan chains at amino acid residues 180 and 196 (mouse). Previous in vitro data indicated that the conversion process may not require glycosylation of PrP.
View Article and Find Full Text PDF