Nuclear lamins form nuclear lamina localized under the inner nuclear membrane. It was previously considered that the nuclear lamina predominantly plays a structural role, however, its involvement have been recently described in the regulatory processes such as chromatin organization and gene transcription. It is known that mutations in the LMNA gene lead to the development of a large number of diseases, laminopathies, which mainly affect mesenchymal tissue.
View Article and Find Full Text PDFNuclear lamins are the major proteins of nuclear envelope and provide the strength of nuclear membrane as well as the interaction of extra-nuclear structures with components of cell nucleus. Recently, it became clear that lamins not only play a structural role in the cell, but could also regulate cell fate, for example lamins could influence cell differentiation via interaction with components of the Notch signaling pathway. Human mutations in LMNA, encoding lamin A/C lead to diseases commonly referred to as laminopathies.
View Article and Find Full Text PDFMutations in lamin A/C gene (LMNA) lead to development of severe disorders--laminopathies. Unlike most other types of intermediate filaments, where the pathological effect of mutations is tightly linked to alteration of mechanical and integrative functions, the detailed mechanism of lamin mutations is still unclear and possibly involves the alteration of nuclear signaling and transcriptional processes. Since the mesenchymal lineage tissues such as myocardium, skeletal muscle, adipose and bone tissues are mostly affected in laminopathies, the role of lamin A/C in differentiation process of mesenchymal stem cells has been assumed.
View Article and Find Full Text PDF