IEEE Trans Pattern Anal Mach Intell
February 2012
There has been a growing interest in exploiting contextual information in addition to local features to detect and localize multiple object categories in an image. A context model can rule out some unlikely combinations or locations of objects and guide detectors to produce a semantically coherent interpretation of a scene. However, the performance benefit of context models has been limited because most of the previous methods were tested on data sets with only a few object categories, in which most images contain one or two object categories.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2008
We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as nonparametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart.
View Article and Find Full Text PDFIEEE Trans Image Process
June 2010
In this paper, we investigate the problems of anomaly detection and localization from noisy tomographic data. These are characteristic of a class of problems that cannot be optimally solved because they involve hypothesis testing over hypothesis spaces with extremely large cardinality. Our multiscale hypothesis testing approach addresses the key issues associated with this class of problems.
View Article and Find Full Text PDFIEEE Trans Image Process
December 2009
In this work, we first address the problem of simultaneous image segmentation and smoothing by approaching the Mumford-Shah paradigm from a curve evolution perspective. In particular, we let a set of deformable contours define the boundaries between regions in an image where we model the data via piecewise smooth functions and employ a gradient flow to evolve these contours. Each gradient step involves solving an optimal estimation problem for the data within each region, connecting curve evolution and the Mumford-Shah functional with the theory of boundary-value stochastic processes.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2012
This paper addresses the problem of both segmenting and reconstructing a noisy signal or image. The work is motivated by large problems arising in certain scientific applications, such as medical imaging. Two objectives for a segmentation and denoising algorithm are laid out: it should be computationally efficient and capable of generating statistics for the errors in the reconstruction and estimates of the boundary locations.
View Article and Find Full Text PDF