Publications by authors named "A S Vidwans"

Anemia is defined as a low hemoglobin (Hb) concentration and is highly prevalent worldwide. We report on the performance of a smartphone application (app) that records images in RAW format of the palpebral conjunctivae and estimates Hb concentration by relying upon computation of the tissue surface high hue ratio. Images of bilateral conjunctivae were obtained prospectively from a convenience sample of 435 Emergency Department patients using a dedicated smartphone.

View Article and Find Full Text PDF

Potent cyclin dependent kinase inhibitors were prepared using parallel synthesis methodology. Treating advanced intermediate 2 with a variety of hydrazides in DMSO at 80 degrees C for 30 min gave the desired acylsemicarbazides in good to excellent yield. Several compounds were active against cdk4/D1 and cdk2/E in the low nanomolar range.

View Article and Find Full Text PDF

Reactive nitrogen oxide species (RNOS) may contribute to the progression/enhancement of ischemic injury by augmentation of glutamate release, reduction of glutamate uptake, or a combination of both. Consistent with this, induction of nitric oxide synthase (NOS-2) in murine neocortical cell cultures potentiated neuronal cell death caused by combined oxygen-glucose deprivation in association with a net increase in extracellular glutamate accumulation. However, uptake of glutamate via high affinity, sodium-dependent glutamate transporters was unimpaired by induction of NOS-2 under either aerobic or anaerobic conditions.

View Article and Find Full Text PDF

We disclose a novel series of indenopyrazole-based cyclin-dependent kinase (CDK) inhibitors. Kinetic experiments confirmed our initial molecular modeling studies that the compounds are competitive with respect to adenosine 5'-triphosphate (ATP) and bind in the kinase ATP pocket. A unique combination of active pharmacophores led us to a series of semicarbazide-based inhibitors that are highly potent against CDK2 and CDK4 while maintaining selectivity against other relevant serine/threonine kinases.

View Article and Find Full Text PDF

Nitrogen monoxide (NO) has been reported to both activate and inhibit prostaglandin (PG) biosynthesis. This apparent paradox might be explained by the production/action of distinct NO-related species formed as a result of the prevailing redox states of different cellular systems. As such, the effect of NO donors with different redox characteristics on the modulation of prostaglandin H synthase-2 (PGHS-2) in primary mouse cortical astrocytes and COS-7 cells engineered to overexpress PGHS-2 was assessed.

View Article and Find Full Text PDF