New 2D black phosphorus (bP)-phthalocyanine (Pc) nanohybrids have been synthesized by liquid phase exfoliation of black phosphorus crystals in the presence of two organic dyes: phthalocyanine (Pc) and manganese phthalocyanine (MnPc). The key role of the metal cation in the interfacial interaction between the organic dye and bP nanosheets was demonstrated by X-ray absorption spectroscopy and associated with an electron transfer between the metal cation Mn and bP nanosheets, which resembles a coordinative chemical bond. On the other hand, the interaction between bP nanosheets and pure phthalocyanine is governed by van der Waals forces.
View Article and Find Full Text PDFIn investigating the monoatomic layers of P, several stable two-dimensional (2D) allotropes have been theoretically predicted. Among them, single-layer blue phosphorus (BlueP) appears to deliver promising properties. After initial success, where the structure of BlueP triangular patches on Au(111) was conceived on the basis of scanning tunneling microscopy (STM) and density functional theory (DFT), the surface structure model was revisited multiple times with increasing accuracy and insight of theoretical calculations and experimental datasets.
View Article and Find Full Text PDFMetal-porphyrins are studied intensively due their potential applications, deriving from the variety of electronic and chemical properties, tunable by selecting metal centers and functional groups. Metalation, de- and trans-metalation processes are fundamental in this sense to investigate both the synthesis and the stability of these molecular building blocks. More specifically, Pd coordination in tetrapyrroles revealed to be potentially interesting in the fields of cancer therapy, drug delivery and light harvesting.
View Article and Find Full Text PDFDespite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate.
View Article and Find Full Text PDFThe bottom-up synthesis of carbon-based nanomaterials directly on semiconductor surfaces allows for the decoupling of their electronic and magnetic properties from the substrates. However, the typically reduced reactivity of such nonmetallic surfaces adversely affects the course of these reactions. Here, we achieve a high polymerization yield of halogenated polyphenyl molecular building blocks on the semiconducting TiO(110) surface via concomitant surface decoration with cobalt atoms, which catalyze the Ullmann coupling reaction.
View Article and Find Full Text PDF