Publications by authors named "A S Treglia"

Anaplastic thyroid carcinoma (ATC) ranks among the most lethal human cancers. Increased migratory and invasive capabilities are critical in malignancy and are often secondary to epithelial-mesenchymal transition (EMT). However, it is not clear whether the invasive behavior of ATC is associated with the presence of EMT.

View Article and Find Full Text PDF

Chiral hybrid organic-inorganic metal halides are highly promising chiroptoelectronic materials with potential applications in several fields, such as circularly polarized photodetectors, second-order nonlinear optics, and spin-selective devices. However, the ability of manipulating the chiroptical response and the chirality transfer from the organic ligands require one to shed light on structure-property correlations. Herein, we devised and prepared two novel Ge-based chiral hybrid organic-inorganic metal halides showing a different structural topology, namely, a 1D and a 2D arrangement, but composed of the same chemical building blocks: (/-ClMBA)GeI and (/-ClMBA)GeI.

View Article and Find Full Text PDF

Membranous nephropathy is the most common cause of nephrotic syndrome (NS) in non-diabetic adults; in 80% of patients it is idiopathic (PMN). PMN has an autoimmune pathogenesis, 70%-85% of patients have increased titer of antibodies to the podocyte membrane antigen PLA2R. The etiological, prognostic and predictive role of the Ab anti-PLA2R is demonstrated.

View Article and Find Full Text PDF

Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase.

View Article and Find Full Text PDF

Purpose: In type 2 Diabetes, β-cell failure is caused by loss of cell mass, mostly by apoptosis, but also by simple dysfunction (dedifferentiation, decline of glucose-stimulated insulin secretion). Apoptosis and dysfunction are caused, at least in part, by glucotoxicity, in which increased flux of glucose in the hexosamine biosynthetic pathway plays a role. In this study, we sought to clarify whether increased hexosamine biosynthetic pathway flux affects another important aspect of β-cell physiology, that is β-cell-β-cell homotypic interactions.

View Article and Find Full Text PDF