Publications by authors named "A S Tokarev"

SWI/SNF protein complexes are evolutionarily conserved epigenetic regulators described in all eukaryotes. In metameric animals, the complexes are involved in all processes occurring in the nervous system, from neurogenesis to higher brain functions. On the one hand, the range of roles is wide because the SWI/SNF complexes act universally by mobilizing the nucleosomes in a chromatin template at multiple loci throughout the genome.

View Article and Find Full Text PDF

Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells.

View Article and Find Full Text PDF

The results of experimental studies of ohmic conductivity degradation in the ensembles of nanostructured anatase bridges under a long-term effect of direct current are presented. Stochastic sets of partially conducting inter-electrode bridges consisting of close-packed anatase nanoparticles were formed by means of the seeding particles from drying aqueous suspensions on the surfaces of silica substrates with interdigital platinum electrodes. Multiple-run experiments conducted at room temperature have shown that ohmic conductivity degradation in these systems is irreversible.

View Article and Find Full Text PDF

In this work, we develop mathematical models of the immune response to respiratory viral infection, taking into account some particular properties of the SARS-CoV infections, cytokine storm and vaccination. Each model consists of a system of ordinary differential equations that describe the interactions of the virus, epithelial cells, immune cells, cytokines, and antibodies. Conventional analysis of the existence and stability of stationary points is completed by numerical simulations in order to study the dynamics of solutions.

View Article and Find Full Text PDF

Replication of viruses in living tissues and cell cultures is a "number game" involving complex biological processes (cell infection, virus replication inside infected cell, cell death, viral degradation) as well as transport processes limiting virus spatial propagation. In epithelial tissues and immovable cell cultures, viral particles are basically transported via Brownian diffusion. Highly non-linear kinetics of viral replication combined with diffusion limitation lead to spatial propagation of infection as a moving front switching from zero to high local viral concentration, the behavior typical of spatially distributed excitable media.

View Article and Find Full Text PDF