The pathogenicity of many bacteria, including and , depends on pore-forming toxins (PFTs), which cause the lysis of host cells by forming pores in the membranes of eukaryotic cells. Bioinformatic analysis revealed a region homologous to the Lys171-Gly250 sequence in hemolysin II (HlyII) from in over 600 PFTs, which we designated as a "homologous peptide". Three β-barrel PFTs were used for a detailed comparative analysis.
View Article and Find Full Text PDFThree stable microbial consortia, each composed of Bacillus paranthracis and Staphylococcus haemolyticus strains, were isolated from milk of cows diagnosed with mastitis in three geographically remote regions of Russia. The composition of these consortia remained stable following multiple passages on culture media. Apparently, this stability is due to the structure of the microbial biofilms formed by the communities.
View Article and Find Full Text PDFThis paper studies the effect of the laser melting process (LMP) on the microstructure and hardness of a new modified AlCuMgMn alloy with zirconium (Zr) and Yttrium (Y) elements. Homogenized (480 °C/8 h) alloys were laser-surface-treated at room temperature and a heating platform with in situ heating conditions was used in order to control the formed microstructure by decreasing the solidification rate in the laser-melted zone (LMZ). Modifying the AlCuMgMn alloy with 0.
View Article and Find Full Text PDFHemolysin II (HlyII) is one of the virulence factors of the opportunistic bacterium belonging to the group of β-pore-forming toxins. This work created a genetic construct encoding a large C-terminal fragment of the toxin (HlyIILCTD, M225-I412 according to the numbering of amino acid residues in HlyII). A soluble form of HlyIILCTD was obtained using the SlyD chaperone protein.
View Article and Find Full Text PDF