The extraordinary properties of the Kitaev model have motivated an intense search for new physics in materials that combine geometrical and bond frustration. In this Letter, we employ inelastic neutron scattering, spin wave theory, and exact diagonalization to study the spin dynamics in the perfect triangular-lattice antiferromagnet (TLAF) CsCeSe_{2}. This material orders into a stripe phase, which is demonstrated to arise as a consequence of the off-diagonal bond-dependent terms in the spin Hamiltonian.
View Article and Find Full Text PDFThe notion that phonons can carry pseudo-angular momentum has many major consequences, including topologically protected phonon chirality, Berry curvature of phonon band structure, and the phonon Hall effect. When a phonon is resonantly coupled to an orbital state split by its crystal field environment, a so-called vibronic bound state forms. Here, a vibronic bound state is observed in NaYbSe , a quantum spin liquid candidate.
View Article and Find Full Text PDFFifty years after Anderson's resonating valence-bond proposal, the spin-1/2 triangular-lattice Heisenberg antiferromagnet (TLHAF) remains the ultimate platform to explore highly entangled quantum spin states in proximity to magnetic order. Yb-based delafossites are ideal candidate TLHAF materials, which allow experimental access to the full range of applied in-plane magnetic fields. We perform a systematic neutron scattering study of CsYbSe, first proving the Heisenberg character of the interactions and quantifying the second-neighbor coupling.
View Article and Find Full Text PDFDetailed measurements of the in-plane resistivity were performed in a high-quality Ba([Formula: see text])[Formula: see text] ([Formula: see text]) single crystal, in magnetic fields up to 9 T and with different orientations [Formula: see text] relative to the crystal c axis. A significant [Formula: see text] rounding is observed just above the superconducting critical temperature [Formula: see text] due to Cooper pairs created by superconducting fluctuations. These data are analyzed in terms of a generalization of the Aslamazov-Larkin approach, that extends its applicability to high reduced-temperatures and magnetic fields.
View Article and Find Full Text PDFThe low-temperature scanning tunneling microscope and spectroscopy (STM/STS) are used to visualize superconducting states in the cleaved single crystal of 9% praseodymium-doped CaFeAs (Pr-Ca122) with ≈ 30 K. The spectroscopy shows strong spatial variations in the density of states (DOS), and the superconducting map constructed from spectroscopy discloses a localized superconducting phase, as small as a single unit cell. The comparison of the spectra taken at 4.
View Article and Find Full Text PDF