Publications by authors named "A S Perelson"

Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.

View Article and Find Full Text PDF
Article Synopsis
  • * The authors suggest new metrics to measure how well vaccines stimulate CD8 T cells and identify key viral parts that trigger immune response, considering genetic differences among people and viral changes.
  • * The proposed methods were tested successfully using proteins from the Ebola virus and SARS-CoV-2 vaccines, showing the effectiveness of their approach.
View Article and Find Full Text PDF

Studying the early events that occur after viral infection in humans is difficult unless one intentionally infects volunteers in a human challenge study. Here, we use data about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in such a study in combination with mathematical modeling to gain insights into the relationship between the amount of virus in the upper respiratory tract and the immune response it generates. We propose a set of dynamic models of increasing complexity to dissect the roles of target cell limitation, innate immunity, and adaptive immunity in determining the observed viral kinetics.

View Article and Find Full Text PDF

In a subset of SARS-CoV-2 infected individuals treated with the oral antiviral nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving this rebound are not well understood. We used a mathematical model to describe the longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 20 of whom rebounded.

View Article and Find Full Text PDF
Article Synopsis
  • Most individuals with HIV-1 quickly experience a viral rebound after stopping antiretroviral therapy, but a small group can maintain viral remission for a longer time.
  • Researchers created dynamic models to understand the immune response and viral interactions, using data from 24 people who paused their treatment.
  • The study identified key factors, especially the rate of effector cell expansion, that differentiate between those who can maintain control of the virus after treatment interruption and those who cannot.
View Article and Find Full Text PDF