Publications by authors named "A S Monem"

Objective: To explore the impact of perioperative intravenous (IV) paracetamol, administered with caudal ropivacaine on the quality of postoperative recovery in children undergoing hypospadias repair.

Study Design: Double-blinded randomised controlled trial. Place and Duration of the Study: The operating room, post-anaesthesia care unit (PACU), and paediatric surgical ward at the Aga Khan University Hospital, from 31st January 2019 to 1st May 2022.

View Article and Find Full Text PDF

A gentisic acid based-Deep Eutectic Solvent (MTPPBr/GA-DES) was synthesized by mixing one mole of methyl triphenylphosphonium bromide (MTPPBr) and one mole of gentisic acid (GA: 2,5-dihydroxy-benzoic acid) based on the eutectic point phase diagram. Then, it was characterized by FT-IR, NMR, densitometer, and TGA/DTA techniques and used as a potent and novel catalyst for the fast and green synthesis of: (i) Five new 2(a-e) and five known 2(f-j) benzo[6,7]chromeno[2,3-d]pyrimidines and (ii) One new (3a) and eleven known 3(b-l) pyrano[2,3-d]pyrimidines, in solvent-free conditions, short reaction times, and high yields. It is important to mention that for the synthesis of 2(a-j), there is only one reference which states that the reaction times are extremely long (720-2400 min), while these times are reduced to approximately 35-50 min in our proposed strategy, indicatinging that the rate of reactions will be 20-48 times faster, which is the clear and most obvious advantage of our approach.

View Article and Find Full Text PDF

A novel protocatechuic acid-based deep eutectic solvent (ETPPBr/PCA-DES) was prepared by mixing ethyltriphenylphosphonium bromide (ETPPBr) and protocatechuic acid (PCA = 3,4-dihydroxybenzoic acid), and its structure was fully investigated by using the FT-IR, TGA/DTA, densitometer, eutectic point and H NMR techniques. Different molar ratios of ETPPBr to PCA were examined and the eutectic point phase diagram showed that the best ratio for the synthesis of the new DES is the one-to-one ratio of the two starting materials (ETPPBr and PCA). Then, the novel DES was used as a new and capable catalyst for the green synthesis of diverse 1,2,4,5-tetrasubstituted imidazoles a1-a12 from the four-component condensation reaction of phenanthrene-9,10-dione, aromatic amine, aromatic aldehyde, and ammonium acetate with high yields and very short reaction times.

View Article and Find Full Text PDF

MTPPBr/THFTCA-DES was prepared as a new deep eutectic solvent (DES) from a mixture (molar ratio 7:3) of methyltriphenyl-phosphonium bromide (MTPPBr) and tetrahydrofuran-2,3,4,5-tetra-carboxylic acid (THFTCA), and characterized with various spectroscopic techniques, densitometer, and eutectic point. Then, it was used as a new and powerful catalyst for the synthesis of two sets of biologically important compounds, namely the Henna-based benzopyranophenazines and benzoxan-thenetriones. Solvent-free conditions, short reaction time, high efficiency, and easy recycling and separation of the DES catalyst are among the most important features of the presented method.

View Article and Find Full Text PDF

A new DES (MTPPBr-PHTH-DES) was prepared from a mixture of methyltriphenyl-phosphonium bromide (MTPPBr) and phthalic acid (PHTH). The eutectic point phase diagram showed that a one-to-one molar ratio of MTPPBr to PHTH is the optimal molar ratio for the synthesis of new DES. Then, it was characterized with various techniques such as FT-IR, TGA/DTA, densitometer, eutectic point, and NMR and used as a novel acid catalyst in the synthesis of pyrimido[4,5-d]pyrimidines and pyrano[3,2-c]chromes in solvent-free condition.

View Article and Find Full Text PDF