The effect of the formation of deep minima in frequency characteristics of photon density waves (PDWs) during their propagation in scattering media with different optical characteristics has been studied by statistical Monte Carlo modeling. The simulation was performed for the Henyey-Greenstein scattering phase function with the anisotropy factor value varying in the range of 0-0.93.
View Article and Find Full Text PDFAn up to 15 T pulsed magnetic field generator in a volume of a few cubic centimeters has been developed for experiments with magnetized laser plasma. The magnetic field is created by a pair of coils placed in a sealed reservoir with liquid nitrogen, installed in a vacuum chamber with a laser target. The bearing body provides the mechanical strength of the system both in the case of co-directional and oppositely connected coils.
View Article and Find Full Text PDFStatistical modeling of pulsed frequency responses of the light field radiance by an isotropic point source was performed by Monte Carlo technique. Scattering properties of the medium were simulated by the Henyey-Greenstein phase function with different anisotropy factor values. Angular distributions of the pulsed field and amplitudes of the photon density waves in a certain range of parameters were shown to have a qualitatively different character for media with quasi-isotropic and strongly anisotropic scattering.
View Article and Find Full Text PDFThe frequency characteristics of spherical photon density waves excited in media with different degrees of scattering anisotropy are studied. Statistical modeling of the frequency and phase responses of the spatial irradiance of the light field emitted by a point-sized isotropic source were performed employing the Monte Carlo technique. The scattering anisotropy of the medium was determined by the Henyey-Greenstein phase function with different values of the mean scattering cosine.
View Article and Find Full Text PDFThe spatial-angular and temporal characteristics of the radiance of the light field emitted by a nonstationary point isotropic source in sea water are studied. Using the Monte Carlo method, we calculated the pulse transfer functions and frequency responses of the angular radiance distributions at various distances from the source. Particular integral characteristics of the angular radiance distributions are estimated.
View Article and Find Full Text PDF