Epilepsy is characterized by hypersynchronous neuronal discharges, which are associated with an increased cerebral metabolic rate of oxygen and ATP demand. Uncontrolled seizure activity (status epilepticus) results in mitochondrial exhaustion and ATP depletion, which potentially generate energy mismatch and neuronal loss. Many cells can adapt to increased energy demand by increasing metabolic capacities.
View Article and Find Full Text PDFDespite the huge importance that the centrality metrics have in understanding the topology of a network, too little is known about the effects that small alterations in the topology of the input graph induce in the norm of the vector that stores the node centralities. If so, then it could be possible to avoid re-calculating the vector of centrality metrics if some minimal changes occur in the network topology, which would allow for significant computational savings. Hence, after formalising the notion of centrality, three of the most basic metrics were herein considered (i.
View Article and Find Full Text PDFCortical spreading depolarization (SD) imposes a massive increase in energy demand and therefore evolves as a target for treatment following acute brain injuries. Anesthetics are empirically used to reduce energy metabolism in critical brain conditions, yet their effect on metabolism during SD remains largely unknown. We investigated oxidative metabolism during SD in brain slices from Wistar rats.
View Article and Find Full Text PDFMyelination enhances the conduction velocity of action potentials (AP) and increases energy efficiency. Thick myelin sheaths are typically found on large-distance axonal connections or in fast-spiking interneurons, which are critical for synchronizing neuronal networks during gamma-band oscillations. Loss of myelin sheath is associated with multiple alterations in axonal architecture leading to impaired AP propagation.
View Article and Find Full Text PDF