This study suggests a mathematical description and the optimization of the pre-saccharification time during simultaneous saccharification and fermentation with delayed yeast inoculation (dSSF) to ensure the fastest and fullest possible conversion of a substrate into the target product-bioethanol. A pulp derived by alkaline delignification of oat hulls was used as a substrate. The pre-saccharification step of oat-hull pulp was performed at a solid loading of 60 g/L, at 46 ± 2 °C, using mixed enzymes CelloLux-A and BrewZyme BGX, the pre-saccharification time was 8, 15, 24, 39, 48 and 72 h.
View Article and Find Full Text PDFExperiments were done to model enzymatic hydrolysis of and oat hulls treated with dilute solutions of nitric acid and sodium hydroxide in direct and reverse sequences. The enzymatic hydrolysis kinetics of the substrates was studied at an initial solid loading from 30 to 120 g/L. The effects of feedstock type and its pretreatment method on the initial hydrolysis rate and reducing sugar yield were evaluated.
View Article and Find Full Text PDF