In recent years, 3D printing has emerged as a promising technology in energy storage, particularly for the fabrication of Li-ion battery electrodes. This innovative manufacturing method offers significant material composition and electrode structure flexibility, enabling more complex and efficient designs. While traditional Li-ion battery fabrication methods are well-established, 3D printing opens up new possibilities for enhancing battery performance by allowing for tailored geometries, efficient material usage, and integrating multifunctional components.
View Article and Find Full Text PDFEpithelial-to-mesenchymal transition (EMT) plays a major role in breast cancer progression and the development of drug resistance. We have previously demonstrated a trans-differentiation therapeutic approach targeting invasive dedifferentiated cancer cells. Using a combination of PPARγ agonists and MEK inhibitors, we forced the differentiation of disseminating breast cancer cells into post-mitotic adipocytes.
View Article and Find Full Text PDFIn the search for novel anode materials for lithium-ion batteries (LIBs), organic electrode materials have recently attracted substantial attention and seem to be the next preferred candidates for use as high-performance anode materials in rechargeable LIBs due to their low cost, high theoretical capacity, structural diversity, environmental friendliness, and facile synthesis. Up to now, the electrochemical properties of numerous organic compounds with different functional groups (carbonyl, azo, sulfur, imine, etc.) have been thoroughly explored as anode materials for LIBs, dividing organic anode materials into four main classes: organic carbonyl compounds, covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and organic compounds with nitrogen-containing groups.
View Article and Find Full Text PDFCalorie restriction enhances stem cell self-renewal in various tissues, including the mammary gland. We hypothesized that similar to their intestinal counterparts, mammary epithelial stem cells are insulated from sensing changes in energy supply, depending instead on niche signaling. The latter was investigated by subjecting cultures of mammary epithelial stem cells for 8 days to in vivo paracrine calorie-restriction signals collected from a 4-day-conditioned medium of individual mammary cell populations.
View Article and Find Full Text PDFMammary epithelial stem cells differentiate to create the basal and luminal layers of the gland. Inducing the number of differentiating bovine mammary stem cells may provide compensating populations for the milk-producing cells that die during lactation. Inhibition of mTOR activity by rapamycin signals self-renewal of intestinal stem cells, with similar consequences in the mouse mammary gland and in bovine mammary implants maintained in mice.
View Article and Find Full Text PDF