Publications by authors named "A S Kiselyov"

A systemic delivery of therapeutics frequently results in sub-optimal exposure of the targeted locus and undesired side effects. To address these challenges, a platform for local delivery of diverse therapeutics by remotely controlled magnetic micro-robots was introduced. The approach involves micro-formulation of active molecules using hydrogels that exhibit wide range of loading capabilities and predictable release kinetics.

View Article and Find Full Text PDF

Oxytocin (OXT) analogues have been designed to overcome the limitation of the short half-life of the native OXT peptide. Here, we tested ASK2131 on obesity related outcomes in diet-induced obese (DIO) Sprague Dawley rats. In vitro function assays were conducted.

View Article and Find Full Text PDF

Skeletal muscle myoblasts (iMyoblasts) were generated from human induced pluripotent stem cells (iPSCs) using an efficient and reliable transgene-free induction and stem cell selection protocol. Immunofluorescence, flow cytometry, qPCR, digital RNA expression profiling, and scRNA-Seq studies identify iMyoblasts as a skeletal myogenic lineage with a fetal-like transcriptome signature, distinct from adult muscle biopsy myoblasts (bMyoblasts) and iPSC-induced muscle progenitors. iMyoblasts can be stably propagated for >12 passages or 30 population doublings while retaining their dual commitment for myotube differentiation and regeneration of reserve cells.

View Article and Find Full Text PDF

Oxytocin is a hypothalamic neuropeptide that participates in the network of appetite regulation. Recently the oxytocin signaling pathway has emerged as an attractive target for treating obesity. However, the short half-life limits its development as a clinical therapeutic.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents.

View Article and Find Full Text PDF