Purpose: CPX-1 is a novel, liposome-encapsulated formulation of irinotecan and floxuridine designed to prolong in vitro optimized synergistic molar ratios of both drugs postinfusion. This open-label, single-arm, dose-escalating phase I study was designed to determine the maximum tolerated dose and pharmacokinetics of CPX-1 in patients with advanced solid tumors.
Experimental Design: Patients received CPX-1 at 30, 60, 100, 150, 210, or 270 units/m(2) (1 unit = 1 mg irinotecan + 0.
Cancer chemotherapy treatments typically employ drug combinations in which the dose of each agent is pushed to the brink of unacceptable toxicity; however, emerging evidence indicates that this approach may not be providing optimal efficacy due to the manner in which drugs interact. Specifically, whereas certain ratios of combined drugs can be synergistic, other ratios of the same agents may be antagonistic, implying that the most efficacious combinations may be those that utilize certain agents at reduced doses. Advances in nano-scale drug delivery vehicles now enable the translation of in vitro information on synergistic drug ratios into improved anticancer combination therapies in which the desired drug ratio can be controlled and maintained following administration in vivo, so that synergistic effects can be exploited.
View Article and Find Full Text PDFAnticancer drug combinations can act synergistically or antagonistically against tumor cells in vitro depending on the ratios of the individual agents comprising the combination. The importance of drug ratios in vivo, however, has heretofore not been investigated, and combination chemotherapy treatment regimens continue to be developed based on the maximum tolerated dose of the individual agents. We systematically examined three different drug combinations representing a range of anticancer drug classes with distinct molecular mechanisms (irinotecan/floxuridine, cytarabine/daunorubicin, and cisplatin/daunorubicin) for drug ratio-dependent synergy.
View Article and Find Full Text PDF