The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.
View Article and Find Full Text PDFTranscriptomes and proteomes can be normalized with a handful of RNAs or proteins (or their peptides), such as GAPDH, β-actin, RPBMS, and/or GAP43. Even with hundreds of standards, normalization cannot be achieved across different molecular mass ranges for small molecules, such as lipids and metabolites, due to the non-linearity of mass by charge ratio for even the smallest part of the spectrum. We define the amount (or range of amounts) of metabolites and/or lipids per a defined amount of a protein, consistently identified in all samples of a multiple-model organism comparison, as the normative level of that metabolite or lipid.
View Article and Find Full Text PDFIn this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios.
View Article and Find Full Text PDFThere is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules.
View Article and Find Full Text PDFBackground: Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications.
View Article and Find Full Text PDF