Publications by authors named "A S Grishchenko"

Amplifying short pulses directly within a single fiber laser system has proven to be a challenging task, primarily due to thermally induced transverse mode instabilities and detrimental nonlinear effects. Another demanding aspect is preserving the linear polarization state at high power levels, which is even more pronounced for ultra-large-mode area fibers. This study demonstrates significant advancement in the direct amplification of narrow linewidth short pulses from tens of mW to several hundreds of Watts in a single-stage amplification, maintaining a high degree of linear polarization at the maximum output power.

View Article and Find Full Text PDF

Fluorine-doped silica is a key material used in all low-loss and/or radiation-resistant optical fibers. Surprisingly, no fluorine-related radiation-induced point defects have been identified. By using electron paramagnetic resonance, we report the first observation of F-related defects in silica.

View Article and Find Full Text PDF

The role of the hippocampus (Hp) in absence epileptic networks and the effect of endocannabinoid system on this network remain enigmatic. Here, using adapted nonlinear Granger causality, we compared the differences in network strength in four intervals (baseline or interictal, preictal, ictal and postictal) in two hours before (Epoch 1) and six hours (epochs 2, 3 and 4) after the administration of three different doses of the endocannabinoid agonist WIN55,212-2 (WIN) or solvent. Local field potentials were recorded for eight hours in 23 WAG/Rij rats in the Frontal (FC), Parietal PC), Occipital Cortex (OC) and in the hippocampus (Hp).

View Article and Find Full Text PDF

Background: Traumatic brain injury (TBI) poses a significant threat to children's health. Cognitive rehabilitation for pediatric TBI has the potential to improve the quality of life following the injury. Virtual reality (VR) can provide enriched cognitive training in a life-like but safe environment.

View Article and Find Full Text PDF

Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation ( = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network.

View Article and Find Full Text PDF