Publications by authors named "A S Gorshkov"

This paper proposes and implements a novel scheme for recording signals from fibre optic sensors based on tandem low-coherence interferometry with an integrated optical reference interferometer. The circuit allows precision control of the phase shift. Additionally, the paper illustrates the potential for detecting vibration and object deformation using fibre optic Fabry-Perot sensors connected to the registration system.

View Article and Find Full Text PDF

Insecticides are used commonly in agricultural production to defend plants, including legumes, from insect pests. It is a known fact that insecticides can have a harmful effect on the legume-rhizobial symbiosis. In this study, the effects of systemic seed treatment insecticide Imidor Pro (imidacloprid) and foliar insecticide Faskord (alpha-cypermethrin) on the structural organization of pea ( L.

View Article and Find Full Text PDF
Article Synopsis
  • Low-dimensional quantum systems can support unique particles called anyons that behave differently from traditional particles like bosons and fermions, particularly in one dimension.
  • This study successfully creates Abelian anyons using ultracold atoms in an optical lattice and investigates their behavior, including quantum walks and a specific interference effect known as the Hanbury Brown-Twiss effect.
  • When interactions among the anyons are introduced, they exhibit different transport dynamics compared to bosons and fermions, paving the way for future research into complex behaviors of one-dimensional anyons.
View Article and Find Full Text PDF

Hydrogen peroxide (HO) in plants is produced in relatively large amounts and plays a universal role in plant defense and physiological responses, including the regulation of growth and development. In the -legume symbiosis, hydrogen peroxide plays an important signaling role throughout the development of this interaction. In the functioning nodule, HO has been shown to be involved in bacterial differentiation into the symbiotic form and in nodule senescence.

View Article and Find Full Text PDF
Article Synopsis
  • Topologically ordered phases of matter go beyond traditional theories of symmetry-breaking, exhibiting unique traits like long-range entanglement and resilience to local changes.
  • The research focuses on observing a prethermal topologically ordered time crystal using superconducting qubits in a square lattice that are periodically driven, revealing new dynamics not seen in thermal equilibrium.
  • Findings include identifying discrete time-translation symmetry breaking and demonstrating the connection to topological order through measuring topological entanglement entropy, showcasing the potential for exploring novel phases of matter with quantum processors.
View Article and Find Full Text PDF