Publications by authors named "A S Frangakis"

Antibiotic efflux plays a key role for the multidrug resistance in Gram-negative bacteria. Multidrug efflux pumps of the resistance nodulation and cell division (RND) superfamily function as part of cell envelope spanning systems and provide resistance to diverse antibiotics. Here, we identify two phylogenetic clusters of RND proteins with conserved binding pocket residues.

View Article and Find Full Text PDF

Antimicrobial resistance is a global problem, rendering conventional treatments less effective and requiring innovative strategies to combat this growing threat. The tripartite AcrAB-TolC efflux pump is the dominant constitutive system by which Enterobacterales like Escherichia coli and Klebsiella pneumoniae extrude antibiotics. Here, we describe the medicinal chemistry development and drug-like properties of BDM91288, a pyridylpiperazine-based AcrB efflux pump inhibitor.

View Article and Find Full Text PDF

The peptide MS2-L represents toxins of the ssRNA Leviviridae phage family and consists of a predicted N-terminal soluble domain followed by a transmembrane domain. MS2-L mediates bacterial cell lysis through the formation of large lesions in the cell envelope, but further details of this mechanism as a prerequisite for applied bioengineering studies are lacking. The chaperone DnaJ is proposed to modulate MS2-L activity, whereas other cellular targets of MS2-L are unknown.

View Article and Find Full Text PDF

The nap particle is an immunogenic surface adhesion complex from Mycoplasma genitalium. It is essential for motility and responsible for binding sialylated oligosaccharides on the surface of the host cell. The nap particle is composed of two P140-P110 heterodimers, the structure of which was recently solved.

View Article and Find Full Text PDF

Mycoplasma pneumoniae, responsible for approximately 30% of community-acquired human pneumonia, needs to extract lipids from the host environment for survival and proliferation. Here, we report a comprehensive structural and functional analysis of the previously uncharacterized protein P116 (MPN_213). Single-particle cryo-electron microscopy of P116 reveals a homodimer presenting a previously unseen fold, forming a huge hydrophobic cavity, which is fully accessible to solvent.

View Article and Find Full Text PDF