Publications by authors named "A S Dzurak"

Scalable quantum processors require high-fidelity universal quantum logic operations in a manufacturable physical platform. Donors in silicon provide atomic size, excellent quantum coherence and compatibility with standard semiconductor processing, but no entanglement between donor-bound electron spins has been demonstrated to date. Here we present the experimental demonstration and tomography of universal one- and two-qubit gates in a system of two weakly exchange-coupled electrons, bound to single phosphorus donors introduced in silicon by ion implantation.

View Article and Find Full Text PDF

Semiconductor spin qubits represent a promising platform for future large-scale quantum computers owing to their excellent qubit performance, as well as the ability to leverage the mature semiconductor manufacturing industry for scaling up. Individual qubit control, however, commonly relies on spectral selectivity, where individual microwave signals of distinct frequencies are used to address each qubit. As quantum processors scale up, this approach will suffer from frequency crowding, control signal interference and unfeasible bandwidth requirements.

View Article and Find Full Text PDF
Article Synopsis
  • Silicon quantum dots are being explored for spin qubit applications because of their strong intrinsic spin-orbit coupling, which influences hole-spin dynamics.
  • The study demonstrates a singlet-triplet qubit using hole states in a metal-oxide-semiconductor double quantum dot, achieving rapid control with oscillations up to 400 MHz and a maximum coherence time of 1.3 μs.
  • This research identifies ways to enhance qubit performance and lays the groundwork for scaling up to larger arrays of qubits in two-dimensional configurations.
View Article and Find Full Text PDF

Spins of electrons in silicon MOS quantum dots combine exquisite quantum properties and scalable fabrication. In the age of quantum technology, however, the metrics that crowned Si/SiO as the microelectronics standard need to be reassessed with respect to their impact upon qubit performance. We chart spin qubit variability due to the unavoidable atomic-scale roughness of the Si/SiO interface, compiling experiments across 12 devices, and develop theoretical tools to analyse these results.

View Article and Find Full Text PDF

The encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale. However, the operation of the large number of qubits required for advantageous quantum applications will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher.

View Article and Find Full Text PDF