(β-ketoacyl-acyl carrier protein (ACP) synthases II), (fatty acid thioesterases), (stearoyl-ACP desaturase), and (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained.
View Article and Find Full Text PDFFlax is an important crop grown for seed and fiber. Flax chromosome number is 2n = 30, and its genome size is about 450-480 Mb. To date, the genomes of several flax varieties have been sequenced and assembled.
View Article and Find Full Text PDFis a pathogenic fungus that infects flax and causes significant yield losses. In this study, we assembled the genomes of four highly virulent strains using the Oxford Nanopore Technologies (ONT, R10.4.
View Article and Find Full Text PDFThe development of effective antivirals is of great importance due to the threat associated with the rapid spread of viral infections. The accumulation of data in scientific publications and in databases of biologically active compounds provides an opportunity to extract specific information about interactions between chemicals and their viral and host targets. This information can be used for elucidation of knowledge about potential antiviral activity of chemical compounds, their side effects and toxicities.
View Article and Find Full Text PDFRadical lanthanide complexes are appealing platforms to investigate the possibility to engineer relevant magnetic couplings between the two magnetic centers by exploiting the strongly donating magnetic orbitals of the radical. In this paper, we report a spectroscopic and magnetic study on [LnRad(NO)], where Ln = Eu or Lu and Rad is the tridentate tripodal nitroxyl radical 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl. A thorough magnetic investigation by Electron Paramagnetic Resonance (EPR) spectroscopy and magnetometry, fully supported by calculations, allowed us to unravel an unprecedentedly large antiferromagnetic coupling between the Eu and the radical ( = +19.
View Article and Find Full Text PDF