We consider a power grid consisting of three synchronous generators supplying a common static load, in which one of the generators is located electrically much closer to the load than the others, due to a shorter transmission line with longitudinal inductance compensation. A reduced model is derived in the form of an ensemble with a star (hub) topology without parameter interdependence. We show that stable symmetric and asymmetric synchronous modes can be realized in the grid, which differ, in particular, in the ratio of currents through the second and third power supply paths.
View Article and Find Full Text PDFWe consider several topologies of power grids and analyze how the addition of transmission lines affects their dynamics. The main example we are dealing with is a power grid that has a tree-like three-element motif at the periphery. We establish conditions where the addition of a transmission line in the motif enhances its stability or induces Braess's paradox and reduces stability of the entire grid.
View Article and Find Full Text PDFIn this paper, an experimental electronic neuron based on a complete Morris-Lecar model is presented, which is able to become an experimental unit tool to study collective association of coupled neurons. The circuit design is given according to the ionic currents of this model. The experimental results are compared with the theoretical prediction, leading to a good agreement between them, which therefore validate the circuit.
View Article and Find Full Text PDFIn this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. The experimental results are compared to the theoretical prediction, leading to validate this circuit.
View Article and Find Full Text PDFWe have developed a new approach for the description of sequential dynamics of excitatory neural networks. Our approach is based on the dynamics of synapses possessing the short-term plasticity property. We suggest a model of such synapses in the form of a second-order system of nonlinear ODEs.
View Article and Find Full Text PDF