Activation of cultured hepatic stellate cells correlated with an enhanced expression of proteins involved in uptake and storage of fatty acids (FA translocase CD36, Acyl-CoA synthetase 2) and retinol (cellular retinol binding protein type I, CRBP-I; lecithin:retinol acyltransferases, LRAT). The increased expression of CRBP-I and LRAT during hepatic stellate cells activation, both involved in retinol esterification, was in contrast with the simultaneous depletion of their typical lipid-vitamin A (vitA) reserves. Since hepatic stellate cells express high levels of peroxisome proliferator activated receptor beta (PPARbeta), which become further induced during transition into the activated phenotype, we investigated the potential role of PPARbeta in the regulation of these changes.
View Article and Find Full Text PDFBackground & Aims: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression.
View Article and Find Full Text PDFIncreased transforming growth factor (TGF)-beta(1) activity has been observed during pathologic cardiac remodeling in a variety of animal models. In an effort to establish a causal role of TGF-beta(1) in this process, transgenic mice with elevated levels of active myocardial TGF-beta(1) were generated. The cardiac-restricted alpha-myosin heavy chain promoter was used to target expression of a mutant TGF-beta(1) cDNA harboring a cysteine-to-serine substitution at amino acid residue 33.
View Article and Find Full Text PDFIn neuroendocrine cells sorting of proteins from immature secretory granules (ISGs) occurs during maturation and is achieved by clathrin-coated vesicles containing the adaptor protein (AP)-1. We have investigated the role of the mannose-6-phosphate receptors (M6PRs) in the recruitment of AP-1 to ISGs. M6PRs were detected in ISGs isolated from PC12 cells by subcellular fractionation, and by immuno-EM labelling on cryosections.
View Article and Find Full Text PDF