Background/objectives: The uroguanylin-GUCY2C gut-brain axis has emerged as one component regulating feeding, energy homeostasis, body mass and metabolism. Here, we explore a role for this axis in mechanisms underlying diet-induced obesity (DIO).
Subjects/methods: Intestinal uroguanylin expression and secretion, and hypothalamic GUCY2C expression and anorexigenic signaling, were quantified in mice on high-calorie diets for 14 weeks.
Obesity is a well-known risk factor for colorectal cancer but precisely how it influences risks of malignancy remains unclear. During colon cancer development in humans or animals, attenuation of the colonic cell surface receptor guanylyl cyclase C (GUCY2C) that occurs due to loss of its paracrine hormone ligand guanylin contributes universally to malignant progression. In this study, we explored a link between obesity and GUCY2C silencing in colorectal cancer.
View Article and Find Full Text PDFIn recent years, the obesity epidemic has developed into a major health crisis both in the United States as well as throughout the developed world. With current treatments limited to expensive, high-risk surgery and minimally efficacious pharmacotherapy, new therapeutic options are urgently needed to combat this alarming trend. This review focuses on the endogenous gut-brain signaling axes that regulate appetite under physiological conditions, and discusses their clinical relevance by summarizing the clinical and preclinical studies that have investigated manipulation of these pathways to treat obesity.
View Article and Find Full Text PDFExpert Rev Clin Pharmacol
September 2013
Colorectal cancer (CRC) is a major public health concern, ranking among the leading causes of cancer death in both men and women. Because of this continued burden there is a clear need for improved treatment, and more importantly prevention of this disease. In recent years there is significant evidence to support the hypothesis that guanylyl cyclase C (GCY2C) is a tumor suppressor in the intestine, and that the loss of hormone ligands for this receptor is an important step in the disease process.
View Article and Find Full Text PDF