Publications by authors named "A Ruiz-Delgado"

This work deals with microcontaminants (MCs) removal by natural solar zero-valent iron (ZVI) process at natural pH in actual matrices. Commercial ZVI microspheres were selected as ZVI source and hydrogen peroxide and persulfate were used as oxidant agents. The experimental plan comprised the evaluation of sulphates and carbonates/bicarbonates effect on process performance, the possibility of adding an iron chelate (EDDS) to take advantage of leached iron and the treatment of MCs in actual MWWTP secondary effluent.

View Article and Find Full Text PDF

The development of treatment trains for pollutant degradation employing zerovalent iron has been attracting a lot of interest in the last few years. This approach consists of pre-treatment only with zerovalent iron, followed by a Fenton oxidation taking advantage of the iron ions released in the first step. In this work, the advantages/disadvantages of this strategy were studied employing commercial zerovalent iron microparticles (mZVI).

View Article and Find Full Text PDF

Two TiO-rGO nanocomposites were prepared by hydrothermal method from commercial TiO (P25 and Hombikat UV100, HBK). In both cases TiO nanoparticles appeared intimate and homogeneously distributed on rGO surface, but forming a dense network in P25-rGO nanocomposite, and a more open structure in HBK-rGO. Zeta potential and particle size distribution favored the ease of HBK-rGO nanocomposite to form stable suspensions.

View Article and Find Full Text PDF

Olive mill wastewater (OMW) appears as an interesting and innovative natural alternative to synthetic chelating agents of iron in solar photo-Fenton processes at circumneutral pH due to its high polyphenol content, valorizing wastewater typically found in sunny countries. The aim of this work was the reuse of OMW for the elimination of other recalcitrant microcontaminants: terbutryn, chlorfenvinphos, diclofenac, and pentachlorophenol. Highly diluted OMW (1:1500) was employed to keep the iron in solution at circumneutral pH.

View Article and Find Full Text PDF

Conventional wastewater treatments are not usually effective in the remediation of specific landfill leachates due to their high content in toxic and recalcitrant compounds. Advanced and intensive treatments are needed for the decontamination and possible recycling of these effluents. Here, the combination of advanced oxidation processes (solar photo-Fenton) and an aerobic biological reactor have been applied to treat urban landfill leachates.

View Article and Find Full Text PDF