Publications by authors named "A Rubio-Araiz"

Inflammation and metabolism are intricately linked during inflammatory diseases in which activation of the nucleotide-binding domain-like receptors Family Pyrin Domain Containing 3 (NLRP3) inflammasome, an innate immune sensor, is critical. Several factors can activate the NLRP3 inflammasome, but the nature of the link between NLRP3 inflammasome activation and metabolism remains to be thoroughly explored. This study investigates whether the small molecule inhibitor of the NLRP3 inflammasome, MCC950, modulates the lipopolysaccharide (LPS) -and amyloid-β (Aβ)-induced metabolic phenotype and inflammatory signature in macrophages.

View Article and Find Full Text PDF

Background: Microglia are multifunctional cells that are primarily neuroprotective and a deficit in their functional integrity is likely to be a contributory factor in the deteriorating neuronal function that occurs with age and neurodegeneration. One aspect of microglial dysfunction is reduced phagocytosis, and this is believed to contribute to the accumulation of amyloid-β (Aβ) in Alzheimer's disease (AD). Therefore, improving phagocytosis should be beneficial in limiting the amyloidosis that characterises AD.

View Article and Find Full Text PDF

Microglia, like macrophages, can adopt inflammatory and anti-inflammatory phenotypes depending on the stimulus. In macrophages, the evidence indicates that these phenotypes have different metabolic profiles with lipopolysaccharide (LPS)- or interferon-γ (IFNγ)-stimulated inflammatory cells switching to glycolysis as their main source of ATP and interleukin-4 (IL-4)-stimulated cells utilizing oxidative phosphorylation. There is a paucity of information regarding the metabolic signatures of inflammatory and anti-inflammatory microglia.

View Article and Find Full Text PDF

The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.

View Article and Find Full Text PDF

Activation of the inflammasome is implicated in the pathogenesis of an increasing number of inflammatory diseases, including Alzheimer's disease (AD). Research reporting inflammatory changes in post mortem brain tissue of individuals with AD and GWAS data have convincingly demonstrated that neuroinflammation is likely to be a key driver of the disease. This, together with the evidence that genetic variants in the NLRP3 gene impact on the risk of developing late-onset AD, indicates that targetting inflammation offers a therapeutic opportunity.

View Article and Find Full Text PDF