Abdominal muscles are involved in respiration and locomotion. In the isolated pons-spinal cord-rib attached preparation from neonatal rat, the phrenic nerve and abdominal muscles show inspiratory and expiratory activity, respectively. Using this preparation, we investigated whether the bath application of NMDA and 5-HT could evoke locomotor activities in the fourth cervical ventral root (C4VR), phrenic nerve, and abdominal muscle nerve (ilioinguinal nerve, IIG-n).
View Article and Find Full Text PDFThe brainstem locus coeruleus (LC) controling behaviors like arousal, sleep, breathing, pain or opioid withdrawal is an established model for spontaneous action potential synchronization. Such synchronous 'spiking' might produce an extracellular field potential (FP) which is a crucial tool for neural network analyses. We found using ≥10 μm tip diameter suction electrodes in newborn rat brainstem slices that the LC generates at ∼1 Hz a robust rhythmic FP (rFP).
View Article and Find Full Text PDFGlutamate is one of the 20 common amino acids and of utmost importance for chemically mediated synaptic transmission in nervous systems. To expand the color palette of genetically encoded indicators for glutamate, we used protein engineering to develop a red intensity-based glutamate-sensing fluorescent reporter (R-iGluSnFR1). Manipulating the topology of R-iGluSnFR1, and a previously reported green fluorescent indicator, led to the development of noncircularly permutated (ncp) variants.
View Article and Find Full Text PDFOptical imaging of voltage indicators based on green fluorescent proteins (FPs) or archaerhodopsin has emerged as a powerful approach for detecting the activity of many individual neurons with high spatial and temporal resolution. Relative to green FP-based voltage indicators, a bright red-shifted FP-based voltage indicator has the intrinsic advantages of lower phototoxicity, lower autofluorescent background, and compatibility with blue-light-excitable channelrhodopsins. Here, we report a bright red fluorescent voltage indicator (fluorescent indicator for voltage imaging red; FlicR1) with properties that are comparable to the best available green indicators.
View Article and Find Full Text PDF