Publications by authors named "A Rozalski"

A phage-antibiotic synergy could be an alternative in urinary tract infection (UTI) therapy, as it leads to the elimination of bacteria and to the reduction in variants resistant to phages and antibiotics. The aims of the in vitro study were to determine whether phages vB_Efa29212_2e and vB_Efa29212_3e interact synergistically with selected antibiotics in the treatment of infections, to optimize antibiotic concentrations and phage titers for the most effective combinations, and to assess their impact on the number of spontaneous resistant variants and on the phages' reproductive cycles. The modified double-layer disc diffusion method, checkboard, time-kill assays, one-step growth method and the double agar overlay plaque assay were implemented.

View Article and Find Full Text PDF

Biofilms are composed of multicellular communities of microbial cells and their self-secreted extracellular polymeric substances (EPS). The viruses named bacteriophages can infect and lyze bacterial cells, leading to efficient biofilm eradication. The aim of this study was to analyze how bacteriophages disrupt the biofilm structure by killing bacterial cells and/or by damaging extracellular polysaccharides, proteins, and DNA.

View Article and Find Full Text PDF

, an opportunistic pathogen of the urinary tract, is known for its dimorphism and mobility. A connection of lipid alterations, induced by the rods elongation process, with enhanced pathogenicity of long-form morphotype for the development of urinary tract infections, seems highly probable. Therefore, research on the adjustment in the composition and organization of lipids forming elongated rods was undertaken.

View Article and Find Full Text PDF

Unlabelled: Bacteriophage therapy has emerged as a strategy supplementing traditional disinfection protocols to fight biofilms. The aim of the study was to isolate the phages against and to characterize its biological features, morphology, and lytic activity in a formed biofilm model.

Methods: ATCC 29212 strain was used for the trial.

View Article and Find Full Text PDF

is a common cause of catheter-associated urinary tract infections (CAUTIs). In this study, we verified the effectiveness of amikacin or gentamicin and ascorbic acid (AA) co-therapy in eliminating uropathogenic cells, as well as searched for the molecular basis of AA activity by applying chromatographic and fluorescent techniques. Under simulated physiological conditions, a combined activity of the antibiotic and AA supported the growth (threefold) of the C12 strain, but reduced catheter colonization (≤30%) in comparison to the drug monotherapy.

View Article and Find Full Text PDF