Publications by authors named "A Roucou"

In the continuity of a previous jet-cooled rovibrational study of trans and cis conformers of 2-furfural in the mid-infrared region (700-1750 cm-1) [Chawananon et al., Molecules 28 (10), 4165 (2023)], the present work investigates the far-infrared spectroscopy of 2-furfural using a long path absorption cell coupled to a high-resolution Fourier transform spectrometer and synchrotron radiation at the AILES beamline of the SOLEIL synchrotron. Guided by anharmonic calculations, vibrational energy levels and excited-state rotational constants are sufficiently predictive for a complete assignment of all fundamental and combination bands up to 700 cm-1, as well as the rovibrational analysis of 4 (1) low-frequency modes of trans-(cis-)2-furfural.

View Article and Find Full Text PDF

We present the measurement and analysis of the 2OH stretching band of methanol between 7165 cm and 7230 cm cooled down to 26 ± 12 K in a buffer gas cooling experiment. Measurements were performed with a cavity ring-down spectrometer having a detection limit = 2 × 10 cm. A total of 350 rovibrational transitions were assigned and 62 rovibrational transitions were tentatively assigned.

View Article and Find Full Text PDF

The spectroscopic characterization of explosive taggants used for TNT detection is a research topic of growing interest. We present a gas-phase rotational spectroscopic study of weakly volatile dinitrotoluene (DNT) isomers. The pure rotational spectra of 2,4-DNT and 2,6-DNT were recorded in the microwave range (2-20 GHz) using a Fabry-Perot Fourier-transform microwave (FP-FTMW) spectrometer coupled to a pulsed supersonic jet.

View Article and Find Full Text PDF

The ortho-isomer 2-furfural (2-FF), which is a primary atmospheric pollutant produced from biomass combustion, is also involved in oxidation processes leading to the formation of secondary organic aerosols. Its contribution to radiative forcing remains poorly understood. Thus, monitoring 2-FF directly in the atmosphere or in atmospheric simulation chambers to characterize its reactivity is merited.

View Article and Find Full Text PDF

Methylfurans are methylated aromatic heterocyclic volatile organic compounds and primary or secondary pollutants in the atmosphere due to their capability to form secondary organic aerosols in presence of atmospheric oxidants. There is therefore a significant interest to monitor these molecules in the gas phase. High resolution spectroscopic studies of methylated furan compounds are generally limited to pure rotational spectroscopy in the vibrational ground state.

View Article and Find Full Text PDF