Publications by authors named "A Rotini"

The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods.

View Article and Find Full Text PDF

The Posidonia oceanica (L.) Delile 1813 banquette provides precious ecosystem services for Mediterranean beach nourishment and protection, representing an important way of energy transfer through marine-coastal habitats. It is surprising to note how it is poorly investigated, especially concerning its double role as potential sink and source of chemicals.

View Article and Find Full Text PDF

Marine plastic pollution is a well-recognised and debated issue affecting most marine ecosystems. Despite this, the threat of plastic pollution on seagrasses has not received significant scientific attention compared to other marine species and habitats. The present review aims to summarise the scientific data published in the last decade (January 2012-2023), concerning the evaluation of plastic pollution, of all sizes and types, including bio-based polymers, on several seagrass species worldwide.

View Article and Find Full Text PDF

Seagrasses harbour different and rich epiphytic bacterial communities. These microbes may establish intimate and symbiotic relationships with the seagrass plants and change according to host species, environmental conditions, and/or ecophysiological status of their seagrass host. Although Posidonia oceanica is one of the most studied seagrasses in the world, and bacteria associated with seagrasses have been studied for over a decade, P.

View Article and Find Full Text PDF

Skeletal muscle holds an intrinsic capability of growth and regeneration both in physiological conditions and in case of injury. Chronic muscle illnesses, generally caused by genetic and acquired factors, lead to deconditioning of the skeletal muscle structure and function, and are associated with a significant loss in muscle mass. At the same time, progressive muscle wasting is a hallmark of aging.

View Article and Find Full Text PDF