Publications by authors named "A Rothkirch"

Full-field X-ray nanoimaging is a widely used tool in a broad range of scientific areas. In particular, for low-absorbing biological or medical samples, phase contrast methods have to be considered. Three well established phase contrast methods at the nanoscale are transmission X-ray microscopy with Zernike phase contrast, near-field holography and near-field ptychography.

View Article and Find Full Text PDF

Ultra-thin metal layers on polymer thin films attract tremendous research interest for advanced flexible optoelectronic applications, including organic photovoltaics, light emitting diodes and sensors. To realize the large-scale production of such metal-polymer hybrid materials, high rate sputter deposition is of particular interest. Here, we witness the birth of a metal-polymer hybrid material by quantifying in situ with unprecedented time-resolution of 0.

View Article and Find Full Text PDF

printing gives insight into the evolution of morphology and optical properties during slot-die coating of active layers for application in organic solar cells and enables an upscaling and optimization of the thin film deposition process and the photovoltaic performance. Active layers based on the conjugated polymer donor with benzodithiophene units PBDB-T-2Cl and the non-fullerene small-molecule acceptor IT-4F are printed with a slot-die coating technique and probed with grazing incidence small-angle X-ray scattering, grazing incidence wide-angle X-ray scattering, and ultraviolet/visible light spectroscopy. The formation of the morphology is followed from the liquid state to the final dry film for different printing conditions (at 25 and 35 °C), and five regimes of film formation are determined.

View Article and Find Full Text PDF

Details of fast-resistive-heating setups, controlled heating ranging from ∼10 K s to ∼10 K s, to study in situ phase transformations (on heating and on cooling) in metallic glasses by high-energy synchrotron x-ray diffraction are discussed. Both setups were designed and custom built at the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and have been implemented at the P02.1 Powder Diffraction and Total Scattering Beamline and the P21.

View Article and Find Full Text PDF

Crystallization is a fundamental process in materials science, providing the primary route for the realization of a wide range of new materials. Crystallization rates are also considered to be useful probes of glass-forming ability. At the microscopic level, crystallization is described by the classical crystal nucleation and growth theories, yet in general solid formation is a far more complex process.

View Article and Find Full Text PDF