J Acoust Soc Am
December 2024
Investigation of sound pressure waveforms helps the selection of appropriate metrics to evaluate their effects on marine life in relation to noise thresholds. As marine animals move farther away from a sound source, the temporal characteristics of sound pressure may be influenced by interactions with the sediment and the sea surface. Sound pressure kurtosis and root-mean-square (rms) sound pressure are quantitative characteristics that depend on the shape of a sound pulse, with kurtosis related to the qualitative characteristic "impulsiveness.
View Article and Find Full Text PDFModels of the underwater acoustic soundscape are important for evaluating the effects of human generated sounds on marine life. The performance of models can be validated against measurements or verified against each other for consistency. A verification workshop was held to compare models that predict the soundscape from wind and vessels and estimate detection ranges for a submerged target.
View Article and Find Full Text PDFMetrics to be used in noise impact assessment must integrate the physical acoustic characteristics of the sound field with relevant biology of animals. Several metrics have been established to determine and regulate underwater noise exposure to aquatic fauna. However, recent advances in understanding cause-effect relationships indicate that additional metrics are needed to fully describe and quantify the impact of sound fields on aquatic fauna.
View Article and Find Full Text PDFEvaluation of possible effects of underwater sound on aquatic life requires quantification of the sound field. A marine sound source and propagation modelling workshop took place in June 2022, whose objectives were to facilitate the evaluation of source and propagation models and to identify relevant metrics for environmental impact assessment. The scope of the workshop included model verification (model-model comparison) and model validation (model-measurement comparison) for multiple sources, including airguns, a low-frequency multi-beam echo sounder, and a surface vessel.
View Article and Find Full Text PDFThis study presents the results of three-dimensional (3D) propagation modeling of noise from a transiting bulk carrier vessel. In the simulated scenario, the surface vessel is moving past a bottom-mounted hydrophone system. Sound levels are estimated in decidecade frequency bands as the vessel transits past the hydrophone, and the simulation results are compared against real measured data.
View Article and Find Full Text PDF