Publications by authors named "A Riofrio"

Objective: We sought to measure the deformation of tibiofemoral cartilage immediately following a 3-mile treadmill run, as well as the recovery of cartilage thickness the following day. To enable these measurements, we developed and validated deep learning models to automate tibiofemoral cartilage and bone segmentation from double-echo steady-state magnetic resonance imaging (MRI) scans.

Design: Eight asymptomatic male participants arrived at 7 a.

View Article and Find Full Text PDF

The increasing environmental concerns about synthetic polymers as reinforcement in the construction industry have highlighted the need for eco-friendly, biodegradable fibers as potential alternative materials for cementitious composites. This study examines the influence of chitosan particle concentrations on the midterm compressive strength of mortars. Chitosan particles, derived from shrimp shells, were mixed with high early strength hydraulic cement at various percentages (0, 0.

View Article and Find Full Text PDF

Geopolymers are inorganic crosslinked polymers with much less carbon footprint than ordinary Portland cement. Geopolymers and geopolymer-based materials have superior mechanical and durability properties with extreme thermal and chemical resistance. Carbon nano- or microfibers-reinforced geopolymers show potential properties such as electric conductivity, enhanced mechanical and thermal stability, and multi-functionality.

View Article and Find Full Text PDF

Agro-industrial wastes are sustainable resources that have advantages as a reinforcement for polymeric matrices. This study examined the use of banana rachis fiber (BRF) in reinforcing the recycled high-density polyethylene (rHDPE) matrix. For this purpose, polymer composites with 5-20 wt% of BRF were prepared by the extrusion process using a twin-screw extruder and followed a hot press method.

View Article and Find Full Text PDF

The increasing concerns about plastic pollution and climate change have encouraged research into bioderived and biodegradable materials. Much attention has been focused on nanocellulose due to its abundance, biodegradability, and excellent mechanical properties. Nanocellulose-based biocomposites are a viable option to fabricate functional and sustainable materials for important engineering applications.

View Article and Find Full Text PDF