ACS Appl Electron Mater
September 2022
Orbital hybridization at the Co/C interface been has proved to strongly enhance the magnetic anisotropy of the cobalt layer, promoting such hybrid systems as appealing components for sensing and memory devices. Correspondingly, the same hybridization induces substantial variations in the ability of the Co/C interface to support spin-polarized currents and can bring out a spin-filtering effect. The knowledge of the effects at both sides allows for a better and more complete understanding of interfacial physics.
View Article and Find Full Text PDFRecognition and capture of amyloid beta (Aβ) is a challenging task for the early diagnosis of neurodegenerative disorders, such as Alzheimer's disease. Here, we report a novel KLVFF-modified nanomagnet based on magnetic nanoparticles (MNP) covered with a non-ionic amphiphilic β-cyclodextrin (SC16OH) and decorated with KLVFF oligopeptide for the self-recognition of the homologous amino-acids sequence of Aβ to collect Aβ (1-42) peptide from aqueous samples. MNP@SC16OH and MNP@SC16OH/Ada-Pep nanoassemblies were fully characterized by complementary techniques both as solid powders and in aqueous dispersions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2019
The understanding of magnetoresistance (MR) in organic spin valves (OSVs) based on molecular semiconductors is still incomplete after its demonstration more than a decade ago. Although carrier concentration may play an essential role in spin transport in these devices, direct experimental evidence of its importance is lacking. We probed the role of the charge carrier concentration by studying the interplay between MR and multilevel resistive switching in OSVs.
View Article and Find Full Text PDFThe quest for a spin-polarized organic light-emitting diode (spin-OLED) is a common goal in the emerging fields of molecular electronics and spintronics. In this device, two ferromagnetic (FM) electrodes are used to enhance the electroluminescence intensity of the OLED through a magnetic control of the spin polarization of the injected carriers. The major difficulty is that the driving voltage of an OLED device exceeds a few volts, while spin injection in organic materials is only efficient at low voltages.
View Article and Find Full Text PDF