Publications by authors named "A Richarz"

The COSMOS Database (DB) was originally established to provide reliable data for cosmetics-related chemicals within the COSMOS Project funded as part of the SEURAT-1 Research Initiative. The database has subsequently been maintained and developed further into COSMOS Next Generation (NG), a combination of database and tools, essential components of a knowledge base. COSMOS DB provided a cosmetics inventory as well as other regulatory inventories, accompanied by assessment results and and toxicity data.

View Article and Find Full Text PDF

As the basis for managing the risks of chemical exposure, the Chemical Risk Assessment (CRA) process can impact a substantial part of the economy, the health of hundreds of millions of people, and the condition of the environment. However, the number of properly assessed chemicals falls short of societal needs due to a lack of experts for evaluation, interference of third party interests, and the sheer volume of potentially relevant information on the chemicals from disparate sources. In order to explore ways in which computational methods may help overcome this discrepancy between the number of chemical risk assessments required on the one hand and the number and adequateness of assessments actually being conducted on the other, the European Commission's Joint Research Centre organised a workshop on Artificial Intelligence for Chemical Risk Assessment (AI4CRA).

View Article and Find Full Text PDF

In silico toxicology (IST) approaches to rapidly assess chemical hazard, and usage of such methods is increasing in all applications but especially for regulatory submissions, such as for assessing chemicals under REACH as well as the ICH M7 guideline for drug impurities. There are a number of obstacles to performing an IST assessment, including uncertainty in how such an assessment and associated expert review should be performed or what is fit for purpose, as well as a lack of confidence that the results will be accepted by colleagues, collaborators and regulatory authorities. To address this, a project to develop a series of IST protocols for different hazard endpoints has been initiated and this paper describes the genetic toxicity in silico (GIST) protocol.

View Article and Find Full Text PDF

Read-across is a well-established data gap-filling technique applied for regulatory purposes. In US Environmental Protection Agency's New Chemicals Program under TSCA, read-across has been used extensively for decades, however the extent of application and acceptance of read-across among U.S.

View Article and Find Full Text PDF

Improving regulatory confidence in, and acceptance of, a prediction of toxicity from a quantitative structure-activity relationship (QSAR) requires assessment of its uncertainty and determination of whether the uncertainty is acceptable. Thus, it is crucial to identify potential uncertainties fundamental to QSAR predictions. Based on expert review, sources of uncertainties, variabilities and biases, as well as areas of influence in QSARs for toxicity prediction were established.

View Article and Find Full Text PDF