Undiagnosed and untreated human immunodeficiency virus (HIV) infection increases morbidity in the HIV-positive person and allows onward transmission of the virus. Minimizing missed opportunities for HIV diagnosis when a patient visits a healthcare facility is essential in restraining the epidemic and working toward its eventual elimination. Most state-of-the-art proposals employ machine learning (ML) methods and structured data to enhance HIV diagnoses, however, there is a dearth of recent proposals utilizing unstructured textual data from Electronic Health Records (EHRs).
View Article and Find Full Text PDFTwo-dimensional fused aromatic networks (2D FANs) have emerged as a highly versatile alternative to holey graphene. The synthesis of 2D FANs with increasingly larger lattice dimensions will enable new application perspectives. However, the synthesis of larger analogues is mostly limited by lack of appropriate monomers and methods.
View Article and Find Full Text PDFHerein, we report the synthesis of mechanically interlocked nitrogenated nanographenes. These systems have been obtained by clipping different tetralactam macrocycles around a 1.9 nm dumbbell-shaped nitrogenated nanographene.
View Article and Find Full Text PDFStar-shaped nanographenes (SNGs) are large monodisperse polycyclic aromatic hydrocarbons that are larger than a nanometer and have shown a lot of promise in a wide range of applications including electronics, energy conversion, and sensing. Herein, we report a new family of giant star-shaped N-doped nanographenes with diameters up to 6.5 nm.
View Article and Find Full Text PDFThe synthesis, characterization, and optical properties of a novel star-shaped oligothiophene with a central rigid trithienobenzene (BTT) core and diketopyrrolopyrrole (DPP) units are reported and compared with homologous linear systems based on the benzodithiophene (BDT) and the naphthodithiophene (NDT) units end capped with DPPs. This comparison is aimed at elucidating the effect of the star-shaped configuration versus linear conformation on the optical and electrical properties. Electronic and vibrational spectroscopies, together with transient absorption spectroscopy, scanning electronic microscopy, and DFT calculations are used to understand not only the molecular properties of these semiconductors, but also to analyze the supramolecular aggregation in these derivatives.
View Article and Find Full Text PDF