Publications by authors named "A Revcolevschi"

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions.

View Article and Find Full Text PDF

One-dimensional (1D) magnetic insulators have attracted significant interest as a platform for studying quasiparticle fractionalization, quantum criticality, and emergent phenomena. The spin-1/2 Heisenberg chain with antiferromagnetic nearest neighbour interactions is an important reference system; its elementary magnetic excitations are spin-1/2 quasiparticles called spinons that are created in even numbers. However, while the excitation continuum associated with two-spinon states is routinely observed, the study of four-spinon and higher multi-spinon states is an open area of research.

View Article and Find Full Text PDF

We study the absorption spectra of the yellow excitons in CuO in high magnetic fields using polarization-resolved optical absorption measurements with a high frequency resolution. We show that the symmetry of the yellow exciton results in unusual selection rules for the optical absorption of polarized light and that the mixing of ortho- and para- excitons in magnetic field is important. The calculation of the energies of the yellow exciton series in strong and weak magnetic field limits suggests that a broad n = 2 line is comprized by two closely overlapping lines, gives a good fit to experimental data and allows to interpret the complex structure of excitonic levels.

View Article and Find Full Text PDF

We combine infrared and Raman spectroscopies to investigate finite length scale effects in CuGeO nanorods. The infrared-active phonons display remarkably strong size dependence whereas the Raman-active features are, by comparison, nearly rigid. A splitting analysis of the Davydov pairs reveals complex changes in chemical bonding with rod length and temperature.

View Article and Find Full Text PDF

In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry-breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders is under debate. Here, we employ resonant x-ray scattering in stripe-ordered superconductors (La,M)2CuO4 to probe the relationship between electronic nematicity of the Cu 3d orbitals, structure of the (La,M)2O2 layers, and CDW order.

View Article and Find Full Text PDF